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The correlation function of spin measurements of two spin-1
2 particles in two moving

inertial frames is derived within the framework of the Lorentz covariant quantum me-
chanics with the preferred frame. The localization of the particles during the detection
and proper transformation properties under the action of the Lorentz group of the spin
operator are taken into account. Some special cases and approximations of the calculated
correlation function are discussed.
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1. INTRODUCTION

Recent analyses of the Einstein–Podolsky–Rosen (EPR) correlations (Bohm,
1951; Einsteinet al., 1935) are usually restricted to observers staying in a fixed
inertial frame of reference because of very serious difficulties connected with
description of EPR-like experiments in frames in a relative motion. The reasons of
these difficulties are the incompatibility of the relativity of simultaneity for moving
observers with the instantaneous state reduction and the nonexistence of a covariant
notion of localization in the relativistic quantum mechanics (Bacry, 1988). The
latter deficiency is especially serious because every realistic measurement involves
localization in the detector area.

Following some authors (e.g., Bell, 1981), a consistent formulation of quan-
tum mechanics (QM) require a preferred frame (PF) at the fundamental level.
A conceptual difficulty related to the notion of PF lies in an apparent contra-
diction with the Lorentz symmetry. However, Rembieli´nski (1980, 1997) has
shown that it is possible to arrange Lorentz group transformations in such a
way that the Lorentz covariance is valid while the relativity principle is broken
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on the quantum level; such an approach is consistent with all the classical
phenomena.

The physical meaning of the new form of the Lorentz group transformations
lies in an absolute synchronization scheme (ASS) for clocks, which is different
from Einstein’s scheme (Andersonet al., 1998; Jammer, 1979; Mansouri and
Sexl, 1977; Reichenbach, 1969; Will, 1992). Both synchronizations, the new and
the standard one, are physically inequivalent on the classical level only for veloc-
ities greater than the velocity of light. Furthermore, the causality notion, which is
implied by ASS, is more general than the Einstein one and thus it is applicable to
nonlocal phenomena.

A Lorentz covariant formulation of QM based on the above mentioned ASS
was given by Caban and Rembieli´nski (1999). In such a formalism it is possible to
define Lorentz-covariant localized states and a Lorentz-covariant position operator
as well as the spin operator transforming properly under the action of the Lorentz
group. Therefore, it allows one to calculate the EPR correlation function for any
spin (Rembieli´nski and Smoli´nski, 2002), taking into account the localization of
the particles during the detection. Note, that the EPR correlations calculated by
Czachor (1997a,b) does not comply with these assumptions.

In the rest of this section we briefly describe main features of ASS. The main
idea is based on a well-known fact that the definition of time coordinate depends
on the procedure used to synchronize clocks (Jammer, 1979; Mansouri and Sexl,
1977). If we restrict ourselves to the time-like or light-like signal propagation, the
choice of this procedure is a convention (Andersonet al., 1998; Jammer, 1979;
Reichenbach, 1969; Will, 1992). Therefore, the form of Lorentz transformations
depends on the synchronization scheme, and we can find a synchronization pro-
cedure that leads to such a form of Lorentz transformations that it preserves the
instant time hyperplanes.

The transformation of the coordinates between inertial framesOu andOu′

reads (Rembieli´nski, 1980, 1997):

x′(u′) = D(3, u)x(u), (1a)

u′ = D(3, u)u, (1b)

whereu = (u0, u) is the four-velocity of PF with respect toOu,3 belongs to the
Lorentz group, andD(3, u) is a 4× 4 matrix. The Lorentz transformations for
rotations are standard while for boosts they take the following form (Rembieli´nski,
1997):

x
′0 = x0

w0
, (2a)

x′ = −x0w+ x+ w · x
1+

√
1+ |w2|

w− u0(u · x)w, (2b)



P1: GDX

International Journal of Theoretical Physics [ijtp] pp903-ijtp-468234 August 20, 2003 13:32 Style file version May 30th, 2002

Einstein–Podolsky–Rosen Correlations and the Preferred Frame 1039

Fig. 1. Four-momentum hyperboloid for a time-like particle as seen by an ob-
server in a different inertial frames in the ASS. This hyperboloid is topologically
equivalent to the one in Einstein’s synchronization.

wherew = (w0, w) denotes a four-velocity of the frameOu′ as seen by the observer
in the frameOu.

We point out that under Lorentz transformations the time coordinate is only
scaled by a positive factor, so the time ordering of events cannot be inverted by
any Lorentz transformations, regardless of their space-time separation. The same
holds for the 0th component of the four-momentum (see the Figs. 1 and 2). This is
important in the QM context because the transformations of time do not involve
position operators.

2. LORENTZ COVARIANT QUANTUM MECHANICS,
LOCALIZED STATES AND SPIN

The Lorentz covariant QM in the framework of ASS was discussed by Caban
and Rembieli´nski (1999). With each inertial observer inOu we associate a Hilbert
spaceHu, so we have a bundle of Hilbert spaces rather than a single Hilbert space
of states. It has been shown (Caban and Rembieli´nski, 1999) that one can introduce
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Fig. 2. Four-momentum hyperboloid for a space-like particle as seen by an ob-
server in a different inertial frames in the ASS. Note, that the lower bound of the
0th component of the four-momentumk0 is the invariant asymptotic boundary
given by the equalityk0 = 0. Therefore, the situation is completely different than
in the standard case, where the sign ofk0 is not Lorentz invariant.

Hermitian momentum and coordinate four-vector operators satisfying

[ x̂µ(u), p̂ν(u)] = i

(
uν p̂µ(u)

uλ p̂λ(u)
− δµν

)
, (3a)

[ p̂µ(u), p̂ν(u)] = 0, (3b)

[ x̂µ(u), x̂ν(u)] = 0. (3c)

The time operator̂x0 commutes with all the observables, what allows us to interpret
the time as a parameter just like in the standard nonrelativistic QM. Moreover,

[ x̂i , p̂k] = i δi
k, [x̂i , p̂0] = p̂i

p̂0
, [x̂µ(u), p̂2(u)] = 0. (4)

The commutation relations (3) are covariant in ASS.
Applying the Wigner method one can easily determine the action of the

Lorentz group on the base vectors (Caban and Rembieli´nski, 1999)

U (3)|k, u, m; s, σ 〉 = Ds(R(3,u))λσ |k′, u′, m; s, λ〉, (5)
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where

p̂µ(u)|k, u, m; s, σ 〉 = kµ|k, u, m; s, σ 〉 (6)

and

〈k, u, m; s, λ|k′, u, m; s′, λ′〉 = 2k0δ3(k′ − k)δs′sδλ′λ (7)

(hereafterk denotes the vector formed from covariant components of the momen-
tum, i.e.,k = (k1, k2, k3)).

Now we can construct the localized states (i.e., the eigenvectors of the position
operator) and the covariant spin operator. Eigenstates of the position operatorx̂(u)
(locked up in thet0 = 0) are of the form

|x, u, m; s, σ 〉 = 1

(2π )3/2

∫
d3k)

2ω(k)

√
uνkν ei k·x|k, u, m; s, σ 〉, (8)

whereω(k) = k0 is a positive solution of the dispersion relation.
The spin operator commute with the position and the following relations hold:

Ŝ(u)|x, u, m; s, τ 〉 = 6s
στ |x, u, m; s, σ 〉, (9)

where6s are the standard generators of rotation in (2s+ 1)-dimensional repre-
sentation, and

U (3)Ŝi (u)U †(3) = RT
(3,u)

i
j Ŝ

j (u′), (10)

whereR(3,u) is a Wigner rotation. Moreover,Ŝi (u) fulfill the standard commutation
relations

[ Ŝi (u), Ŝj (u)] = i ε i jk Ŝk(u). (11)

Let n be a unit vector. Because [Ŝ(u), x̂(u)] = 0 we can introduce a set of
common eigenvectors ofx̂(u) andn · Ŝ(u); namely

x̂(u)|x, n, u, m; s, λ〉 = x|x, n, u, m; s, λ〉, (12a)

n · Ŝ(u)|x, n, u, m; s, λ〉 = λ|x, n, u, m; s, λ〉. (12b)

Thus we can construct a projector onto a regionÄ and onto the spin component
in then direction in the frameOu:

Pλ
Ä,n(u) =

∫
Ä

d3x|x, n, u, m; s, λ〉〈x, n, u, m; s, λ|, (13)

which transforms under Lorentz group transformations as follows

U (3)Pλ
Ä,n(u)U †(3) = Pλ

Ä′,n′ (u
′). (14)

In the above formulan′ = R(3,u)n and the regionÄ′ is obtained from the regionÄ
by the Lorentz transformationx′k = D(3, u)k

i xi . There is no analog of formula
(14) in standard relativistic QM.
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3. EINSTEIN–PODOLSKY–ROSEN CORRELATIONS

In this section we employ the formalism introduced above to calculation of
the correlation function of the EPR-type experiment.

We consider distinguishable particles, sayα andβ; vectors describing pure
states belong to the tensor product

Hsα
α (u)⊗Hsβ

β (u). (15)

If we assume that the observerA registers the particleα and the observerB registers
the particleβ, then the corresponding observables read

MA,a(uA) =
sα∑

µα=−sα

µαPµα
A,a(uA)⊗ I ≡

sα∑
µα=−sα

µα5
µα
A,a, (16a)

MB,b(uB) = I ⊗
sβ∑

µβ=−sβ

µβP
µβ
B,b(uB) ≡

sβ∑
µβ=−sβ

µβ5
µβ
B,b. (16b)

Let us describe events during an EPR experiment. Firstly, assume that the
initial state is described by the density matrixρ(uA, tA). Now, i.e., at the time
tA, the observerA measuresMA,a(uA) with selection ofµa. For the observerB
this time is tB = D(3, uA)0

0tA and then he measuresMB,b(uB) with selection
of µb.

The probabilityp(µa) that the observerA has measured valueµa and the
probabilityp(µb|µa) that the observerB has measured the valueµb if the observer
A had measuredµa are

p(µa) = Tr
[
ρ(uA, tA)5µa

A,a

]
, (17a)

p(µb|µa) = 1

p(µa)
Tr
[
ρ(uA, tA)5µa

A,aU
†(3)5µb

B,bU (3)5µa
A,a

]
(17b)

(recall that inHα ⊗Hβ , U (3) = U (3)α ⊗U (3)β). The correlation function then
reads

C(a, b) = Tr[ρ(uA, tA)MA,aU
†(3)MB,bU (3)]. (18)

Let us assume that the initial state is a singlet state of spin-1
2 particles (i.e.,

sα = sβ = 1
2), so it can be written in the position basis as
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|9〉 =
1
2∑

λα ,λβ=− 1
2

∫
d3x

∫
d3y 2u0ψλαλβ (x, y, uA)

×
∣∣∣∣x, uA, mα;

1

2
, λα

〉
⊗
∣∣∣∣y, uA, mβ ;

1

2
, λβ

〉
, (19)

where

[ψλαλβ ](x, y, uA) = i√
2
χ (x, y, uA)

(
0 −i
i 0

)
. (20)

Therefore

C(a, b) = −1

4

∫
A

d3x
∫

BA

d3y|χ (x, y, uA)|2(a · RT
(3,uA)b), (21)

i.e., up to a factor

C(a, b) ∝ a · RT
3,uA

b. (22)

Now, the only thing we need is to calculate the explicit form of the Wigner
rotation matrix in ASS. Unfortunately, the resulting formula is rather complicated,
so instead discussing the general case, we consider a number of special ones.

1. If both the measurements are performed in the same inertial frame or if
one of the observers performs his measurement in PF, we find that

C(a, b) ∝ a · b = cosθab. (23)

2. If the velocities of PF are high, we obtain the approximated formula of the
form

C(a, b) ∝ a · b− 1

1+ nA · nB
[(a · nA)(b · nA)+ (a · nB)(b · nB)

+ (a · nB)(b · nA)− (1+ 2nA · nB)(a · nA)(b · nB)], (24)

wherenA andnB denote the directions of the velocities of PF with respect
to the observers.

3. If the velocities of PF are small, i.e.|σA| ¿ 1 and |σB| ¿ 1 we can
approximate the correlation function by

C(a, b) ∝ a · b+ (a× b) · (σA × σB)

2
. (25)

This last case may correspond to the correlation experiments performed
on the Earth and identification of PF with cosmic background radiation
frame.
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4. CONCLUSIONS

We have shown that in the framework of the Lorentz covariant QM with PF
one can build the formalism allowing the calculation of the correlation function
in the EPR-type experiments performed in moving inertial frames. Because the
resulting formula for the correlation function depends on velocities of the PF it can
be helpful with the proposal of a realistic experiment that can answer the question
of the existence of quantum mechanical preferred frame. It is important to stress
that the dependence of the EPR correlation function on PF velocity cannot be
removed by expressing the correlation function by classical velocities given in the
Einstein’s synchronization scheme. This means that the Lorentz covariant quantum
mechanics must distinguish a preferred frame.
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